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Summary. The problem of periastron advance, which is the basis of one of the three 
classical tests of relativity theory, is revised with respect to both Newtonian mechanics 
and General Relativity and updated in the light of recent astronomical measurements of 
binary pulsars. We show that in Newtonian mechanics the addition of a corrective term 
to Newton’s law of gravitation, consistent with the principles of Newtonian mechanics, 
leads to the same formula of periastron advance as that used in General Relativity, 
which proves to be valid in all astronomical cases known, even in the cases of binary 
pulsars such as PSR B1913+16, PSR J1141-6545 and the so-called double pulsar PSR 
J0737-3039A and PSR J0737-3039B, which are considered as natural relativity laborato-
ries. Thus, among the relativistic phenomena, the periastron advance is one that can be 
also understood in Newtonian terms by means of an ad hoc assumption. [Contrib Sci 
10:65-72 (2014)]
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Introduction

In the following, we review and update the problem of pe-
riastron advance in the light of recent astronomical mea-
surements, with the aim of providing a useful academic 
approach in the teaching of gravity. The advance of Mer-
cury’s perihelion, which cannot be predicted in Newtoni-
an mechanics by means of Newton’s law of gravitation, is 
one of the three classical tests of General Relativity 
[1,8,13,19,21,28].

At its origin, gravitation was envisaged as an attractive 
force whose precise analytical formulation was subordina-
ted to astronomical measurements which, at the time of 
Newton, led to the known dependence on the inverse of 
the distance squared. Newton himself was aware of the 

fact that formulations other than this one would imply a 
perihelion shift. The lack of evidence for that shift at that 
time was thus taken as a proof of validation of the afore-
mentioned formulation [14–16].

Since the mid-19th century, as more accurate astrono-
mical measurements became available and the advance 
of Mercury’s perihelion was detected, several ad hoc pro-
posals were made in an attempt to account for the ano-
malous perihelion shift of Mercury’s orbit. Two alternative 
approaches were proposed: (1) modifying Newton’s law 
of gravitation and (2) explaining the phenomenon as a 
perturbation whose ingenious origin could be, among ot-
hers, the existence of a new planet, Vulcan, near the Sun; 
a hypothetical satellite of Mercury, solar oblateness, a ring 
of planets between the Sun and Mercury, or a particular 
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distribution of the matter responsible for the zodiacal light 
[3,29]. This second alternative proved to be unsuccessful 
because of its incompatibility with other astronomical me-
asurements. At the beginning of the 20th century, General 
Relativity accounted for the anomalous advance of Mer-
cury’s perihelion in a natural way, without any ad hoc as-
sumption and without disturbing the agreement with ot-
her planetary observations.

However, in the mid-20th century, the Brans-Dicke the-
ory of gravitation [2] appeared as an alternative to Eins-
tein’s more popular theory of General Relativity. In the 
Brans-Dicke theory, the reciprocal of the gravitational 
constant G is itself a scalar field generated by matter, 
which has the physical effect of changing G. The field 
equations contain the dimensionless constant ω , called 
the Brans-Dicke coupling constant, which can be chosen 
to fit observations. Like General Relativity, the Brans-Dicke 
theory predicts Mercury’s perihelion advance. However, 
the value of ω  must be very large—at least several hun-
dred, an artificial requirement in some views—for the 
Brans-Dicke theory to explain the results from observati-
ons such as Mercury’s perihelion advance and the radio 
wave deflection by the Sun. Eventually, the Brans-Dicke 
theory of gravitation lost relevance. 

The approximations made in the context of General 
Relativity when calculating the periastron advance lead to 
a formula that can also be obtained in Newtonian mecha-

nics, as will be shown, if a simple corrective term—consis-
tent with the principles of Newtonian mechanics—are 
added to Newton’s law of gravitation. The approximations 
leading to this formula are acceptable not only in the case 
of Mercury and other planets of the Solar System, but 
also, as will be seen, in the case of all pulsars with a mea-
sured periastron advance. In particular, PSR B1913+16, 
PSR J1141-6545 and the so-called double pulsar PSR 
J0737-3039A and PSR J0737-3039B are considered as na-
tural relativity laboratories. 

Interaction forces in Newtonian
mechanics

In Newtonian mechanics, forces between two particles, A 
and B, are attractions or repulsions of equal modulus and 
thus are parallel to AB . Their dependence upon position 
and velocity in inertial frames is restricted by space homo-
geneity and isotropy, by the uniformity of time, and by 
Galileo’s principle of relativity. Accordingly, forces can only 
be a function of the distance ρ between the two particles, 
Its time derivative ρ  and the modulus of the component 
orthogonal to AB  of the difference between their velociti-
es relatives to any inertial frame of reference (Fig. 1). Ac-
tually this last dependence is not found in the usual forces 
formulated in Newtonian mechanics, which are a function 
of just ρ and ρ  . However, as will be demonstrated, its in-

Fig. 1. Interaction forces in Newtonian mechanics. 
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troduction in the formulation of gravitation—in Newtoni-
an mechanics the only true force between distant parti-
cles—allows a formulation that deals with the periastron 
advance. 

Relativity corrections to Newton’s law 
of gravitation

First-order relativity corrections are used to formulate the 
periastron advance per revolution. As a first step, we con-
sider the case of a particle in a central gravitation field. 
The results are then extended to the two-bodies problem.

Because Einstein’s field equations are prohibitively 
hard to solve for multi-body systems like the Solar System, 
an alternative approach to address the study of motion in 
a gravitational field was developed: Eddington, Robertson, 
and Shiff began to establish the “post-Newtonian” appro-
ximation of the General Relativity. Note, however, that, 
despite its name, “post-Newtonian” does not mean a mo-
dified Newton’s law of gravitation, but rather a simplified 
Einstein’s gravity. 

The post-Newtonian formalism assumes a weak gravi-
tational field and slow body motion—compared with the 
speed of light—with both conditions being fulfilled in the 
case of the Solar System. In this formalism, a set of param-
eterized correction terms are added to Newton’s law to 
account for relativistic effects. Nordtvedt introduced up to 
seven parameters, which became known as the “parame-
trized post-Newtonian (PPN) formalism” [17,18]. In par-
ticular, the PNN formula that eventually yield the perihe-
lion advance includes contributions from the γ (the 
amount of space curvature produced by one unit of mass 
at rest) and β (the non-linearity in the law of gravitation) 
PNN parameters. Taking both parameters =1 (a condition 
needed to be consistent with Einstein’s equivalence prin-
ciple), the general relativistic formula for the perihelion 
advance is obtained.

Particle of infinitesimal mass moving 
in a central gravitational field 

According to General Relativity, the gravitational field in 
the two-body problem is described in terms of curved 
space-time. The field equations that describe the space-
time geometry are nonlinear and the Schwarzschild me-
tric is an exact solution to the Einstein field equations. 
Using the Schwarzschild coordinates, the motion of a par-
ticle of infinitesimal mass undergoing the attraction of a 

non-spinning free spherical mass of negligible diameter 
follows a path defined by the geodesics of the Schwarz-
schild metric [4]. In this fram, the periastron advance per 
revolution θ  is calculated from [5]:

	 ( )
−π
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1 2
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where c is the vacuum velocity of light, a is the semimajor 
orbital axis, e the eccentricity, and µ = MG (G = gravitatio-
nal constant, M = mass creating the field).
If q « 1, the first-order approximation of Equation (1) yields
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This formula can be obtained from Newtonian mechanics 
if a corrective term consistent with Newtonian mechanics 
principles is added to Newton’s law of gravitation.

A first-order relativity correction to Keplerian orbits 
can be considered as a perturbation coming from several 
corrective terms added to Newton’s law of gravitation [6]. 
A set of terms describes an attractive force, while a further 
term describes a force—unacceptable in Newtonian mec-
hanics—tangential to the orbit and directed towards the 
side of increasing radius. Their value per unit of mass is
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where r is the distance to the field center, r  is its time 
derivative, and v is the velocity. Coefficients α, β, γ, δ, and 
λ are dimensionless.

As (2µ/rc2) «1, the denominator in the term of δ can be 
approximated as 1−(2µ/rc2)≈ 1 and, consequently, Equati-
on (4) can be written as
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Corrective terms Frad and Ftan lead to Equation (3) of the 
periastron advance provided that –α+2β+2λ = 3 [7], while 
parameters γ and δ can be taken arbitrarily. In Newtonian 
mechanics, as λ=0, condition –α+2β = 3 has to be verified.

If α = –3 and β = 0, Frad reduces to

	
µ µ µ≡= 12 2 2rad 6 q
r c r r

F 		                   (7)

while the reverse condition α=0 and β=3/2 leads, with 
γ=δ=1, to

					                      (8)

where ν is the modulus of the velocity component ortho-
gonal to the radius.

Any linear combination of corrective terms defined by 
Equations (7) and (8), with coefficients ε1 and ε2 verifying 
ε1 + ε2 = 1, defines a corrective force leading to the same 
periastron advance as that predicted by relativity mecha-
nics by means of Equation (3) [22]. Certain sets of coeffici-
ents ε1, ε2 may be preferable if attention is paid to other 
phenomena.

As the corrective terms defined by Equations (7) and 
(8) have been obtained from perturbation theory, they 
must be small compared to the value µ 2r  which they cor-
rect:

	                           ;   
                               

	 (9)

Extension to the two-bodies problem 

So far, a particle of infinitesimal mass moving in a central 
gravitation field has been considered, but an extension to 
the two-bodies problem can be done provided that, for 
two particles P1 and P2 with mass m1 and m2 respectively, 
the following values are used in Equations (3), (7), and (8):

μ = G(m1 + m2); a = semi-major axis of the relative ellipse   (10)
or
μ = Gm2; a=ai	  			                      (11)

where ai is the semi-major axis of the elliptic orbit follo-
wed by Pi  focusing on the system center of mass.

The case of planets of the Solar System

The maximum value of q [Equation (2)] and those of q1 and 
q2 [Equation (9)], which must be «1 in order for the appro-
ximations leading to Equation (3) in General Relativity to 
be acceptable, are shown in Table 1 for each planet of the 
Solar System. 

As all q, q1 and q2 values are «1, the perihelion advance 
as calculated in General Relativity is the same as in Newto-
nian mechanics with the corrective term added to New-
ton’s law of gravitation.

The case of binary pulsars

Gravitational forces much stronger than those acting in 
the Solar System can be found in binary systems, and hen-
ce the usual approximation made to calculate the perias-
tron advance are questionable. Among binary systems, 
those with a pulsar are better known because the pulsar 
greatly helps in the measurement of system parameters. 

The PSR B1913+16 pulsar, illustrated in Fig. 2, was the 
first discovered pulsar belonging to a binary system. Its 
discovery by Hulse and Taylor [12] in 1974 in Arecibo gran-
ted them the Nobel Prize of Physics in 1993. 

With its well-known parameters [9–11,25–27], it has 
been considered a natural laboratory of relativistic experi-
mentation because of the high gravitational attraction 

µ − µ ν µ
= ≡= − −2 2 2

22 2 2 2 2rad
v r3 3 q
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F

Table 1. Maximum values of q, q1, and q2 for planets of the Solar System

Planet qmax 109 q1 max 109 q2 max 109

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

170.0
 82.0
 59.0
 40.0
 12.0
  6.3
  3.1
  2.0
  1.7

190.0
 82.0
 60.0
 43.0
 12.0
  6.6
  3.2
  2.0
  2.0

73.0
40.0
 6.1
19.0
 5.6
 3.1
 1.5

 0.98
 0.6

µ≡ 21 c r
q 6 1<< 1

 ν≡ 2

2

2c
q 3 1<< 1
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between it and its companion star. The mass of the pulsar is 
about one solar mass and its radius is around 10 km. Its com-
panion star is of similar mass and radius. Their orbital period 
is around 8 h. Table 2 summarizes the principal parameters 
of the pulsar, among which the high value of the periastron 
advance. The last three parameters of Table 2 were obtained 
from the former parameters [11,25] by applying, among ot-
hers, Equation (3) of the periastron advance—as applied to 
the two-bodies problem [Equation (11)]. 

The use of Equation (3) in this case is permissible be-
cause of the small value of q ≅ 3,6·10–5. In this case,  q1 ≅ 
1,8 ·10–5 and q2 ≅ 5,6·10–6 are also «1, and so the Newtoni-
an approach to Equation (3) is also permitted. 

Recently, data concerning other binary pulsars have 
been published [11]. Those with periastron advance > 1°/
year are collected in Table 3. The so-called double pulsar 
(PSR J0737-3039 A and PSR J0737-3039 B), is the current 
best laboratory for relativistic gravitation, both for conser-
vative effects (like the periastron advance) and dissipative 
effects (gravitation-wave emission). Pulsar J11411-6545, 
discovered in 1999, is another convenient laboratory for 
General Relativity due to its short orbital period (0.2 side-
ral days) and large eccentricity (0.17) compared to other 
compact binary systems made of a neutron star and a whi-
te dwarf. 

In all cases, the published parameters lead to maxi-
mum values of q, q1 and q2 (Table 4), which are small 
enough, compared to unity, to allow the use of Equation 
(3) in both General Relativity and Newtonian mechanics 
with the corrected law of gravitation. 

From the structure of binary pulsars one can expect 
that this will always be the case.

Other causes influencing the perias-
tron advance

In previous sections, heavenly bodies were treated as par-
ticles. However their finite dimension as well as their spin-
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Fig. 2. Illustration of binary pulsar PSR B1913+16.

Table 2. Pulsar PSR B1913+16 parameters [10,22]

Projected semi-major axis a1sini = 2.324 ± 0.0007 light s

Eccentricity                              e = 0.617155 ± 0.000007

Binary orbit period P = 27906.98172 ± 0.00005 s

Rate of periastron advance θ = 4.226 ± 0.002 deg yr–1

Transverse Doppler
 and gravitation redshift

γ = 0.0047 ± 0.0007 s

Sine of inclination angle sini = 0.81 ± 0.16

Mass of the system M = 2.83 Msol (Msol = solar mass)

Pulsar mass Mp = 1.39 ± 0.15 Msol
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ning movement may influence the periastron advance. In 
General Relativity, Synge [24] studied the orbit of a parti-
cle in a field created by a motionless sphere with mass 
distribution showing spherical symmetry, and Rayner [20] 
extended Synge’s results to the case of a central mass 
with uniform spinning movement.

These studies lead to terms θ1 '  and θ 2 "  additive to the 
periastron advance θ  given by Equation (3) [23]

					     (12a)
	

					     (12b)

where r0 is the radius of the sphere, Ω its angular velocity, 
and φ the angle between the rotational axis and the direc-
tion orthogonal to the orbit plane.

For the case of the planets of the Solar System, both 
corrective terms can be neglected when compared to the 
value of θ .

For binary pulsars associated with a neutron star, the 
assumption of negligible diameter can be easily accepted 

Table 3. Other pulsars with high q. a90% confidence upper companion mass limit

Pulsar A1 sin(i) (lt −1 ) Eccentricity θ’ (deg yr−1 ) Binary Period (days) Mtot
(Msol)

M2
(Msol)

U p r M a s s a 
(Msol)

J0737-3039A 1.415032 0.0877775 16.89947 0.10225156248 2.58708 1.2489

±1.0 10−06 ±9.0 10−07 ±6.8 10−04 ±5.0 10−11 ±1.6 10−04 ±7.0 10−04

J0737-3039B 1.5161 0.0877775 16.89947 0.10225156248 2.58708 1.3382

±1.6 10−03 ±9.0 10−07 ±6.8 10−04 ±5.0 10−11 ±1.6 10−04 ±7.0 10−04

J1141-6545 1.858922 0.171884 5.3096 0.1976509593 2.2892 1.02

±6.0 10−06 ±2.0 10−06 ±4.0 10−04 ±1.0 10−10 ±3.0 10−04 ±1.0 10−02

B1534+12 3.7294626 0.2736767 1.755805 0.420737299153 1.35

±8.0 10−07 ±1.0 10−07 ±3.0 10−06 ±4.0 10−12 ±8.0 10−02

J1756-2251 2.7564 0.180567 2.585 0.319633898 4.442

±2.0 10−04 ±2.0 10−06 ±2.0 10−03 ±2.0 10−09

J1906+0746 1.420198 0.085303 7.57 0.165993045 2.867

±2.0 10−06 ±2.0 10−06 ±3.0 10−02 ±8.0 10−09

B2127+11C 2.51845 0.681395 4.4644 0.33528204828 3.486

±6.0 10−05 ±2.0 10−06 ±1.0 10−04 ±5.0 10−11

Table 4. Maximum values of q, q1, q2  
a Maximum values of the other corrective terms that are not considered

Pulsar q (x104) q1 (x105) q2 (x106) (v/c)2 (x106) a 

J0737-3039A 0.27 2.61 3.04 1.01

J0737-3039B 1.27 2.61 3.48 1.16

J1141-6545 0.18 1.62 1.40 0.47

B1534+12 0.13 1.07 1.25 0.42

J1756-2251 0.52 4.76 1.18 0.39

J1906+0746 0.62 5.97 1.16 0.39

B1913+16 0.35 1.82 0.83 0.28

B2127+11C 0.94 4.09 0.90 0.30
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because of the small size of this kind of star. Actually, it is 
known in General Relativity that the effect of the structure 
of the bodies becomes evident at the fifth post-Newtoni-
an order, which makes it almost impossible to distinguish 
with both Solar System and pulsar observations.

Conclusions

The value of the periastron advance predicted by General 
Relativity in all known cases, even those regarded as natu-
ral laboratories of relativity (binary pulsars and the so ca-
lled double pulsar) can also be predicted by Newtonian 
mechanics if a corrective term consistent with its princi-
ples is added to Newton’s law of gravitation. This term can 
reduce to the simple form defined in Equations (7) and (8) 
or be any linear form of them, with coefficients ε1 and ε2 
verifying ε1+ε2 = 1.

Newton himself was aware of the fact that formulati-
ons other than his law of gravitation would imply a perihe-
lion shift. But during his time neither the advance of Mer-
cury’s perihelion nor binary pulsars had been detected. 
Thus, among the relativistic phenomena, the periastron 
advance is one that can be also understood in Newtonian 
terms by means of the addition of a corrective term to 
Newton’s law of gravitations, consistent with Newtonian 
principles of mechanics.
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***

Resum. El problema de l’avanç del periastre, que ha basat una de les tres proves clàssiques 
de la teoria de la relativitat, és revisat des de les dues formulacions de la mecànica: la newto-
niana i la relativitat general, i és actualitzat a la llum dels recents amidaments astronòmics en 
púlsars binaris. Es mostra que en la mecànica newtoniana l’addició d’un terme correctiu a la 
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llei de gravitació de Newton, consistent amb els principis de la mecànica newtoniana, con-
dueix a la mateixa fórmula per a l’avanç del periastre que l’emprada en relativitat general, 
que resulta vàlida en tots els casos astronòmics coneguts, fins i tot en el cas dels púlsars 
binaris tals com els PSR B1913+16 i PSR J1141-6545, i l’anomenat púlsar doble PSR J0737-
3039A i PSR J0737-3039B, considerats com a laboratoris naturals de relativitat. Així doncs, 
entre els fenòmens relativistes, l’avanç del periastre n’és un que pot ser interpretat consis-
tentment en termes newtonians per mitjà d’una suposició ad hoc.

Paraules clau: periastre · periheli · gravitació · púlsar · mecànica newtoniana




